Invited Article # Antioxidants in Health and Disease: Review of Clinical Trials Namrata Sanieevi Doctoral candidate, University of Texas, USA Namrata Sanjeevi graduated from PSG College of Technology with a degree in Biotechnology. Currently, she is a doctoral candidate in Nutritional Sciences at the University of Texas, Austin with a solid foundation in research methods and fundamentals of nutrition. Research interests include the design and implementation of a multifaceted approach to identify factors that influence suboptimal diets in Supplemental Nutrition Assistance Program (SNAP) participants. Corresponding author - Namrata Sanjeevi (nami_psg@yahoo.co.in) ## **Abstract** Free radicals play an important role in several biological processes such as cell signaling and redox regulation. However, prolonged exposure to free radicals leads to oxidative damage. Subsequently, it has been implicated in the progression of several diseases like cancer, cardiovascular disease, neurological disease, pulmonary disease, rheumatoid arthritis, nephropathy, ocular disease and pre-eclampsia. The antioxidant defense system within the body may confer protection to oxidative damage by scavenging free radicals. Antioxidants also may be obtained from dietary sources/ supplements. The efficacy of antioxidant intake on initiation and progression of chronic diseases will be reviewed. Chettinad Health City Medical Journal 2013; 2(4): 113 - 122 #### Introduction Oxygen is an element that is crucial for the sustenance of life on earth. It is paradoxical that this indispensable element can cause harmful effects in humans under certain circumstances. Much of the detrimental consequences of oxygen are attributed to its ability to form free radicals¹. A free radical is a reactive molecule that contains at least one unpaired electron in its outer orbit, and is capable of independent existence². Accumulation of these molecules in the body results in oxidative stress, a process by which physiologically important molecules such as carbohydrates, proteins and lipids are damaged³. However, the body can employ antioxidants to impede the threat of free radical attack⁴. Antioxidants are potent scavengers of free radicals¹. They function by donating an electron to a free radical or by eliminating initiators of free radicals⁵. Antioxidants may be classified as endogenous or exogenous depending on their mode of acquisition by the body¹. Endogenous antioxidants are naturally produced by the body¹. Superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase are enzymatic systems within the body that function as antioxidants1. Lipoid acid, glutathione, L-arginine, coenzyme Q10, melatonin, uric acid and bilirubin are examples of non-enzymatic antioxidants that are produced during metabolism^{3,4}. On the other hand, exogenous antioxidants cannot be synthesized biologically, and must be supplied through the diet and/or supplements¹. Vitamin E (alpha - tocopherol), vitamin C (ascorbate), beta-carotene (provitamin A carotenoid), trace elements such as selenium, manganese, zinc, flavonoids, lycopene, omega-3 and omega-6 fatty acids are some antioxidants that can be obtained from the diet1. Fruits, vegetables, nuts, herbs, spices and beverages are identified as natural sources of such exogenous antioxidants⁶. A delicate balance between prooxidant and antioxidant substances is achieved by the production and scavenging of free radicals³. Under optimal physiological conditions, this equilibrium marginally shifts to favor a prooxidant status and maintains mild oxidative stress within the body³. Antioxidants perform a dual role; of scavenging free radicals while still allowing a sufficient amount to persist and carry out vital functions7. Some of the important biological functions of free radicals are cell signaling and redox regulation3. However, an acute shift towards prooxidant status will lead to oxidative damage⁷. Additionally, lack of regulation of free radicals is implicated in the pathogenesis of several disease states such as cancer, cardiovascular disease, neurological disease, pulmonary disease, rheumatoid arthritis, nephropathy, ocular disease pre-eclampsia¹. The purpose of this paper is to review some of the clinical trials that have explored the influence of antioxidant intake from food and supplements on the prevention of initiation and progression of certain chronic diseases. Additionally, the paper will discuss about the use of antioxidants in health maintenance. #### Cancer Mortality and morbidity associated with cancer is a major public health problem. It was estimated that 12.7 million people were affected by cancer worldwide in 2008⁸. Furthermore, about 7.6 million deaths were attributed to cancer⁸. Breast cancer and lung cancer are the leading causes of cancer death among females and males, respectively⁸. The development of cancer is a multistage process that involves initiation, progression and promotion of the tumor⁹. Free radicals can wreck havoc at all stages of cancer development9. The influence of free radical induced- deoxyribonucleic acid (DNA) alterations on carcinogenesis may be mediated by epigenetic effects on gene expression, mutations and chromosomal rearrangements¹⁰. smoke, Tobacco ultraviolet (UV) radiation, consumption of red meat and alcohol, and obesity have been identified as risk factors for various types of cancer owing to their ability to generate oxidative stress¹¹. The antioxidant status of cancer patients has been found to be significantly lower than that of normal individuals, as demonstrated by reduced levels of glutathione, glutathione peroxidase, superoxide dismutase, vitamin C and E in cancer patients¹². Observational studies have reported that the intake of fruits and vegetables confer protection against cancers of the lung, breast, stomach, pharynx, esophagus and pancreas¹³. Given that fruits and vegetables are rich sources of antioxidants, it can be reasoned that antioxidant supplementation reduces the risk of cancer. On the contrary, clinical trials testing the efficacy of antioxidant supplementation for cancer prevention have yielded limited success. The alpha-tocopherol and beta-carotene (ATBC) study sought to determine the effectiveness of alpha-tocopherol and beta-carotene supplementation in reducing the occurrence of lung cancer among male smokers, aged 50-69 years. Results of this trial demonstrated that the incidence of lung cancer was significantly higher among individuals receiving beta-carotene¹⁴. The Beta-Carotene and Retinol Efficacy Trial (CARET) also found that the relative risk of lung cancer was greater in participants who received beta-carotene and retinol supplementation when compared to placebo¹⁵. Participants for this trial included men who were substantially exposed to asbestos due to their occupation. The Linxian study was conducted in Linxian, a rural county belonging to north-central China. The population in this region was reported to be disproportionately affected by high rates of esophageal and gastric cancers¹⁶, as well as subclinical deficiencies of retinol, carotenoids, tocopherols and other vitamins. The following combination of supplements were used in the Linxian study: Supplement A consisting of retinol palmitate and zinc; Supplement B including riboflavin and niacin, Supplement C comprising of vitamin C and molybdenum, and Supplement D consisting of beta-carotene, selenium and alpha-tocopherol. The eight intervention groups received AB, AC, AD, BC, BD, CD, ABCD, or placebo. The only significant outcome was that the group which received supplement D had a lower risk for stomach cancer mortality when compared to the other groups¹⁷. The Women's Antioxidant Cardiovascular Study (WASC) indicated that vitamin C, alpha-d-tocopherol acetate and beta-carotene did not reduce total cancer incidence in women with a history of cardiovascular disease (CVD) or three or more risk factors for CVD^{18} . A reduction in non-Hodgkin's lymphoma risk was observed in women receiving beta-carotene¹⁸. However, lung cancer incidence was higher among women receiving vitamin C^{18} . Results from the Selenium and Vitamin E Cancer Prevention Trial (SELECT) established that selenium, vitamin E or selenium and vitamin E combination did not reduce prostate cancer risk in a group of healthy men¹⁹. Thus, results from human clinical trials that explore the efficacy of antioxidant supplementation on cancer incidence have been inconclusive. # Cardiovascular disease (CVD) CVD is the leading cause of death worldwide, and accounted for approximately 17 million deaths in 2008²⁰. Diseases of the cardiac muscle tissue and the vascular system, such as atherosclerosis, ischemic heart disease (IHD), stroke, congestive heart failure (CHF), are responsible for CVD. An inappropriate diet, obesity, physical inactivity, alcohol abuse and cigarette smoking are some of the modifiable risk factors of CVD²¹. The effects of risk factors on CVD may be mediated by oxidative stress, which in turn can cause oxidation of low-density lipoprotein (LDL) and disruption of vascular homeostasis. Thus, a diet rich in antioxidants may protect against the risk of CVD. A greater intake of fruits and vegetables has been associated with a lower risk of CVD²². The Heart Outcomes Prevention Evaluation (HOPE) was a large scale trial that reported no significant differences in myocardial infarction (MI), stroke and death from cardiovascular causes between vitamin supplemented and placebo groups²³. In contrast to the HOPE Trial, other studies that have researched the influence of antioxidant supplementation on CVD risk illustrate the beneficial effects of vitamin E. The Secondary Prevention using Antioxidants of Cardiovascular Disease in Endstage renal disease (SPACE) trial showed a significant decrease in fatal and non-fatal AMI, ischemic stroke, peripheral vascular disease, and unstable angina in CVD patients receiving
vitamin E supplement when compared to the placebo group²⁴. Similarly, Cambridge Heart Antioxidant Study (CHAOS)study indicated that supplementation decreased the incidence of CVD death and non-fatal MI in coronary artery disease (CAD) patients²⁵. The Nurses Healthy Study (NHS) determined vitamin A, vitamin C and vitamin E intake obtained from food sources and supplements in a population of middle-aged women. Results from this study reported no association between vitamin A, vitamin C and coronary disease risk²⁶. However,intake of vitamin E from food sources was inversely related to risk of death from major coronary events²⁶. The use of vitamin E supplements for more than 2 years was associated with a reduction in coronary disease risk²⁷. The Physician's Health Study (PHS) showed that beta-carotene did not reduce cardiovascular mortality in the supplemented group versus the placebo group²⁸. Results from the CARET trial indicated an increased risk for cardiovascular death in individuals treated with beta-carotene and retinol than the control group¹⁵. Additionally, the ATBC study did not establish a beneficial effect of beta-carotene on cardiac-related mortality in male smokers with a history of MI²⁹. Thus, vitamin E supplements have shown a greater therapeutic potential for CVD when compared to other antioxidants. # Pre-eclampsia Pre-eclampsia during pregnancy is marked by high blood pressure and proteinuria³⁰. Clinical manifestations of pre-eclampsia include birth of small-for-gestational-age infant, poor growth of the infant and premature birth, neonatal morbidity and mortality, and conditions that affect liver, kidneys, brain or blood clotting system for the woman³¹. The presence of free radicals may lead to injury of endothelial cells that line the inside surfaces of blood vessels, which in turn results in the clinical symptoms of pre-eclampsia³². Predisposition for LDL, resistance to oxidative stress, and antioxidant intake are the major determinants of a woman's response to oxidative stress³³. Since a dietary deficiency of antioxidants is with this disorder, antioxidant supplementation may be employed as a potential measure to help prevent and treat this condition. Interventional studies have evaluated the use of vitamin C and E combination^{34,36}, vitamin C and E in combination with allopurinol³⁷, vitamin C alone³⁸, red palm oil³⁹, lycopene⁴⁰ and selenium⁴¹ in pre-eclampsia. Pregnant women at low, moderate or high risk of developing pre-eclampsia were included for participation in these studies. Women with pre-eclampsia were excluded from participation. The primary outcomes examined were pre-eclampsia, preterm severe pre-eclampsia, small-for-gestational age infants, and infant mortality. No significant differences were reported in the risk of any of the primary outcomes between the antioxidant supplemented and control group for the trials. Women allocated to lycopene had a greater reduction in the relative risk of pre-eclampsia. However, results from this study were based on a small group of women. The existing body of literature does not favor the use of antioxidants during pregnancy to reduce pre-eclamptic risk. #### Diabetes mellitus Diabetes mellitus is a chronic, multiorgan disease that can severely damage the eyes, kidneys, nerves, heart and/ or blood vessels⁴². Globally, it is estimated that the number of adults affected by diabetes was 285 million in the year 2010, and will increase to 439 million by 2030⁴³. India and China are expected to be disproportionately burdened by the increase in diabetes prevalence⁴³. This condition is characterized by hyperglycemia that arises out of abnormalities in insulin secretion or insulin action⁴². Hyperglycemia can trigger generation of free radicals, thereby creating a state of oxidative stress that is involved in pathogenesis of diabetes and its related complications⁴³. Small scale trials have shown the beneficial effects of antioxidants on diabetes-related complications. Supplementation with vitamin E⁴⁴ and vitamin E plus C⁴⁵ positively influenced endothelial-dependent vasorelaxation in Type I diabetic patients. However, a positive effect was not observed for Type 2 diabetic patients supplemented with vitamin E plus C45. In another study, significant improvement in renal function was observed in Type 2 diabetic patients supplemented with vitamin E plus C46. The Primary Prevention Project (PPP) trial demonstrated no beneficial effect of vitamin E for diabetic subjects⁴⁷. However, the population for the PPP trial was not restricted to diabetic patients. In contrast, the alpha-lipoic acid in Diabetic Neuropathy (ALADIN)⁴⁸, ALADIN II⁴⁹, ALADIN III5°, DEKAN (Deutsche kardialeautonomeneuropathie)⁵¹ and SYDNEY⁵² trials were limited to a population of diabetic subjects. ALADIN, ALADIN II and ALADIN III studies demonstrated significant improvements in patient symptoms, nerve function, and neuropathy impairment score, respectively, in diabetic patients who were supplemented with alpha-lipoic acid^{48,50}. In the DEKAN study, cardiac autonomic neuropathy was found to be improved in the alpha -lipoic acid treated group versus placebo group⁵¹. The SYDNEY trial showed advancements in sensory symptoms of diabetic polyneuropathy upon alpha-lipoic treatment⁵². In summary, large scale clinical trials that involve alpha-lipoic acid treatment have proved to be more involving effective than trials vitamin treatment. More basic and clinical research is required to test the efficacy of antioxidants, such as alpha-lipoic acid, in improving the prognosis of diabetes. # Chronic obstructive pulmonary disease (COPD) COPD is a common lung disease characterized by airflow limitation attributed to disrupted alveolar attachment, mucus hypersecretion and inflammatory obstruction of the airway⁵³. It is a major public health burden worldwide, and is estimated to affect about 14 million people in the United States⁵³. Smoking and environmental pollution are two major risk factors for COPD⁵³. Oxidative stress from exposure to tobacco and air pollutants may deplete plasma antioxidant capacity, thereby leading to inflammation and mucus secretion⁵⁴. Intake of antioxidants diet/supplements has been suggested as an ideal way to boost the lung antioxidant system⁵⁵. Moreover, it has been associated with improved lung function, and is suggested as a strategy to enhance COPD outcomes⁵⁶. The Women's Health Study (WHS) established that vitamin E supplementation lead to a decrease in the risk of chronic lung disease in women⁵⁷. Lykkesfeldt et al, have shown that supplementation of vitamin C, vitamin E and beta-carotene enabled repletion of ascorbic acid in smokers 58 . N-acetyl-L-cysteine (NAC) is a nutritional supplement that has been used to strengthen antioxidant defense system in patients with COPD. NAC has been found to decrease oxidative stress in airways of COPD patients⁵⁹, and alleviate bronchial hypersecretion⁶⁰. Although the use of antioxidants in COPD shows potential, more research is required to formulate recommendations on antioxidant supplementation for COPD management. ## Antioxidants in health maintenance A prolonged exposure to free radicals may occur as a consequence of normal physiological processes, such as aging and intense exercise, thereby disrupting the delicate balance that exists within our body⁷. Normal individuals can incorporate antioxidant rich foods into their diet to protect themselves from oxidative damage, and thus maintain their health. Anlasik et al, reported a positive association between fruit and vegetable intake and antioxidant status in a group of healthy elderly subjects⁶¹. On the other hand, intake of antioxidant supplements is recommended only when a reduced antioxidant status is identified⁷. For example, several micronutrient deficiencies have been associated with increased morbidity and mortality in children belonging to Africa and Asia⁶². Some of the deficient micronutrients include vitamin A and zinc⁶², which also function as antioxidants. In such cases, supplementation may markedly improve clinical manifestations of the deficiency^{63,64}. It is vital to apply caution when using supplements for healthy individuals since intake of high amounts of antioxidant supplements may lead to antioxidative stress⁶⁵. Hence, precise determination of individual's free radical and antioxidant levels is required before prescribing antioxidant supplements ⁷. # Conclusions Several observational studies have demonstrated the beneficial effect of antioxidant rich diets on disease outcomes. However, discrepancy exists between observational studies and clinical trials that test the efficacy of antioxidants in disease prevention. The lack of adequate success in clinical trials can be viewed from different perspectives. Firstly, several physiological factors influence nutrient bioavailability. Some of the factors include age, gender, ethnicity, body weight, genetic composition and stage of the disease. These factors affect the extent to which antioxidants are utilized by the body, as well as the ability of an individual to respond to antioxidant supplementation. Knowledge of physiological variables that influence antioxidant bioavailability is essential to determine critical aspects of clinical trials, such as effective supplement dosage and duration of treatment. Moreover, a host of lifestyle behaviors are responsible for determining the health of individuals. Antioxidant intake in combination with physical activity, alcohol and tobacco moderation may yield profound benefits in disease management. Thus. multifactorial interventions may serve as alternative strategies in disease management. Finally, investigations on the effects of nutrients in isolation may provide valuable information regarding its mode of action, but do not elucidate the phenomenon of total diet. The intrinsic nature of diet is characterized by several interactions between bioactive dietary components, some of
which still remain unexplained. Hence, antioxidant supplements must be prescribed with caution and the use of antioxidant rich foods as disease prevention agents may hold promise in future clinical trials. Table1. Summary of selected clinical trials testing efficacy of antioxidants in cancer⁶⁶ | Name of study | Trial | Primary outcome | Study population | Relative Risk(Confidence
Interval) | Interpretation of results | |------------------|--|--|---|---|---| | ATBC | α-tocopherol(50mg), or β-
carotene (20 mg), or both
versus placebo | Lung
cancer
incidence | 29,133 male
smokers 50–69
years of
Age, with a
history of MI,
followed for 5–8
years | Lung: 0.98 (0.81–1.19) α -tocopherol vs placebo 1.16 (0.97–1.38) β -carotene vs placebo 1.15 (0.96–1.38) both vs placebo | A significant increase in incidence of lung cancer for β-carotene supplemented group. No significant decrease in incidence of lung cancer for any of the other supplemented groups | | CARET | β-carotene (30 mg) plus
retinol (25000 IU) vs
placebo | Lung
cancer
incidence | 14,254
smokers+4060
asbestos
workers followed
for 4 years | Lung:
1.36 (1.07–1.73) β-carotene plus
retinol
vs placebo | A significant increase in lung cancer incidence in β-carotene plus retinol supplemented group | | Linxian
Study | Intervention groups: AB, AC, AD, BC, BD, CD, ABCD, or placebo. Supplement A: retinol (5000 IU), zinc (22.5 mg). Supplement B: riboflavin (3.2 mg) Supplement C: vitamin C (120 mg), molybdenum (30 μg). Supplement D: β-carotene (15 mg), selenium (50 μg), α-tocopherol (30 mg) | Gastric
and
esophagea
I cancer
mortality | 29,584 adults ages
40-69
followed for 6
years | Esophagus: 0.97 (0.81–1.17) A vs no A 0.90 (0.75–1.08 B vs no B 1.06 (0.88–1.28) C vs no C 1.00 (0.84–1.21) D vs no D Stomach: 1.05 (0.86–1.27) A vs no A 1.08 (0.89–1.31) B vs no B 1.06 (0.87–1.28) C vs no C 0.81 (0.66–0.98) D vs no D | A significant decrease in
stomach cancer mortality
for group supplemented
with D. | | WASC | Vitamin C (500 mg), vitamin E (600 IU qOD), β-carotene (50 mg qOD), 3 combinations of 2 agents, And all 3 vs placebo. | CVD
incidence | 7627 women at
least 40 years of
age who did not
have cancer.
Average follow-
up 9.4 years | Lung: 1.84 (1.14–2.97) any vitamin C vs placebo 1.25 (0.79–1.97) any vitamin E vs placebo 1.26 (0.80–1.99) any β-carotene vs placebo | Lung cancer incidence was significantly higher in women receiving vitamin C. No significant decrease in incidence of total cancer/ specific cancer in any other supplemented group. | | SELECT | selenium (200 μg),
vitamin E (400 IU), or both
vs placebo | Prostate
cancer
incidence | 35,533 men age
≥50 years without
any suspicion for
prostate cancer
followed for 7-12
years | Prostate: 1.13 (0.99–1.29) vitamin E vs placebo 1.04 (0.90–1.18) selenium vs placebo 1.05 (0.91–1.20) both vs placebo | No significant decrease in incidence of prostate cancer in any of the supplemented groups | $Table \ \textbf{2.} \ Summary \ of selected \ clinical \ trials \ testing \ efficacy \ of \ antioxidants \ in \ CVD$ | Name of study | Trial | Primary
outcome | Study population | Relative Risk (Confidence
Interval) | Interpretation of results | |---------------|---|---|---|--|---| | НОРЕ | Vitamin E (400 IU) vs
placebo and ramipril
(10 mg/day) vs
placebo | Myocardial infarction, stroke and death from cardiovascula r causes | Patients aged ≥ 55 with a high risk for CVD. 1838 and 1816 subjects were diabetic in the treatment and control arm, respectively | CVD death: 1.05 (0.90-1.22) vitamin E vs placebo MI:1.02 (0.90-1.15) vitamin E vs placebo Stroke: 1.17 (0.95-1.42) vitamin E vs placebo | No apparent beneficial effect of vitamin E | | SPACE | Vitamin E (800 IU)
versus
Placebo | Total CVD
endpoints | 196 patients with CVD and undergoing chronic hemodialysis | Total CVD endpoints (including sudden death): o·54 (o·33–o·89)vitamin E vs placebo MI(including sudden death): o·45 (o·20–o·99) vitamin E vs placebo | Significant reductions in
total CVD endpoints and
MI in subjects receiving
vitamin E | | CHAOS | Vitamin E supplements
(400-800 IU) vs
placebo | Incidence of
cardiovascula
r death and
non-fatal MI | 2,002 patients with
coronary artery
disease (CAD) | Cardiovascular death and non-fatal MI: o.53 (o.34-o.83) vitamin E vs placebo | A significant reduction in
cardiovascular death and
non-fatal AMI in vitamin E
supplemented group | | NHS | Classification of participants into quintiles based on vitamin A, vitamin C, vitamin E intake from food and supplements | Incidence of
cardiovascula
r death | 34,486 postmenopausal women with no cardiovascular disease followed for 7 years | Coronary Heart Disease
(CHD) death:
0.38 (0.18–0.80) vitamin E
vs placebo | A significant decrease in vitamin E intake from food and death from CHD | | PHS | aspirin (325 mg on alternate days),β-carotene (50 mg on alternate days), both active agents vs placebo | Incidence of
CVD death,
MI and stroke | 22,071 male
physicians, aged
40 to 84 years with no
history of CVD events | CVD death: 1.09 (0.93–1.27) β-carotene vs placebo MI:0.96 (0.84–1.09) β- carotene vs placebo Stroke:0.96 (0.83–1.11) β- carotene vs placebo | No significant decrease in CVD endpoints in the supplemented group. | | CARET | β-carotene (30 mg) plus retinol (25000 IU) vs placebo | Lung cancer
incidence | 14,254 smokers+4060
asbestos workers
followed for 4 years | CVD death: 1.26 (0.99- 1.61) β-carotene plus retinol vs placebo | Increased risk in incidence
of cardiovascular death in
supplemented group | | ATBC | α-tocopherol (50mg), or β-carotene (20 mg), or both versus placebo | Lung cancer
incidence | 29,133 male smokers,
aged 50–69 years with
a history of MI,
followed for 5–8 years | CHD deaths: 1.75 (1.16-2.64) β-carotene vs placebo 1.33 (0.86-2.05) α – tocopherol vs placebo 1.58 (1.05-2.40) both vs placebo | Significant increase in incidence of fatal deaths from CHD in β-carotene and β-carotene plus α-tocopherol groups. | Table 3. Summary of selected clinical trials testing efficacy of antioxidants in pre-eclampsia | Author
of study | Trial | Main outcome | Study population | Relative Risk (Confidence
Interval) | Interpretation of results | |-----------------------------|--|---|--|--|--| | Beazley
D et al. | Vitamin C (1000
mg) and vitamin E
(400 IU) vs
placebo | Rate of pre-
eclampsia | 100 women pregnant at 14 weeks 0 days to 20 weeks 6 days with a history of pre-eclampsia, chronic hypertension, insulin-requiring diabetes mellitus, or multiple gestation | Rate of pre-eclampsia:
0.92 (0.4-2.13)
treatment vs placebo | No significant reduction in the incidence of main outcomes in the supplemented group when compared to the placebo group | | Rumbold
AR et al. | Vitamin C (1000
mg) and vitamin E
(400 IU) vs
placebo | Incidence of pre-eclampsia, death of infant and small-for gestational age infants | 1877 nulliparous women pregnant between 14 and 22 weeks with normal blood pressure at the first measurement in pregnancy, and at trial entry | Pre-eclampsia: 1.20 (0.82–1.75) treatment vs placebo Death of infant: 0.79 (0.61–1.02) treatment vs placebo Small for gestational age infants: 0.87 (0.66–1.16) treatment vs placebo | No significant reduction in the incidence of main outcomes in the supplemented group when compared to the placebo group | | Spinnato
JA et al | Vitamin C (1,000
mg) and vitamin E
(400 IU) | Incidenceof
pre-eclampsia | 739 women diagnosed
with pre-eclampsia or
with a history of pre-
eclampsia |
Pre-eclampsia: o.87 (o.61-1.25) treatment vs placebo | No significant reduction in incidence of pre-eclampsia in supplemented group when compared to the placebo. | | Gülmezo
ğlu AM
et al. | Vitamin E (800
IU), vitamin C
(1000 mg), and
allopurinol (200
mg) | Prolongation
of pregnancy
and assessment
of lipid
peroxides | 56 women with severe
pre-eclampsia between
24 and 32 weeks of
gestation | Delivery within 14 days:
0.68 (0.45-1.04)
treatment vs placebo | No significant differences in prolongation of pregnancy in study group when compared to placebo. Furthermore, there were no differences in lipid peroxide levels | | Steyn PS
et al. | Vitamin C (250
mg) two times a
day until 34
weeks' gestation | Incidence of pre-eclampsia, preterm labor | 200 women less than 26
weeks' gestation and
with a history of a
previous mid-trimester
abortion or previous
preterm labor | Pre-eclampsia: 1.00 (0.21-4.84) vitamin C vs placebo Preterm birth: 1.43 (1.03-1.99) vitamin C vs placebo | The incidence of preterm birth was higher in women supplemented with vitamin C | | Merchan
t AT et al. | Multivitamin containing thiamine (20 mg), riboflavin (20 mg), B-6 (25mg), B-12 (50 mg), E (30 mg), and folic acid (0.8 mg), β-carotene (30 mg) plus preformed vitamin A (5000 IU) versus placebo | Hypertension
during
pregnancy | 1078 HIV-positive
pregnant Tanzanian
women between 12 and
27 week gestation | Hypertension during pregnancy: o.62 (o.40-0.94) multivitamin vs placebo 1.00 (o.66-1.51) vitamin A vs placebo | Women supplemented with multivitamin were less likely to develop hypertension during pregnancy | | Mahdy
ZA et al. | Tocotrienol-rich
fraction (TRF) of
palm
oil (100 mg) vs
placebo | Hypertension
during
pregnancy | Healthy women pregnant
between 12 and 16 weeks
gestation | Pregnancy induced
hypertension:
0.36 (0.12–1.09) palm oil
vs placebo | No benefits of palm oil in
reducing the risk of
pregnancy induced
hypertension | | | | | | | | | T 11 0 | | and the second of the second | | | | |-----------------|-------------|------------------------------|---------------------|-------------------|-------------| | Table 4. Summar | ot selected | t clinical tria | ls testinα etticacy | of antioxidants i | in diabetes | | Name
of study | Trial | Primary outcome | Study population | Relative Risk
(Confidence Interval) | Interpretation of results | |------------------|---|---|---|---|---| | PPP | Aspirin (100 mg) vs
placebo and vitamin
E (300 mg) vs
placebo | CVD deaths | 2062 diabetic patients
aged ≥50 years | Cardiovascular death: 1.23 (0.69-2.19) aspirin vs placebo Cardiovascular death: 1.07 (0.61-1.90) vitamin E vs placebo | Vitamin E supplementation
did not significantly reduce
incidence of CVD death in
diabetic subjects | | ALADI
N | α-lipoic acid
(1200mg, 600 mg, or
100 mg) vs
Placebo for 3 weeks | Symptoms of diabetic peripheral neuropathy | 328 non-insulin-
dependent diabetic
patients with
symptomatic
peripheral neuropathy | - | Significant improvement in symptoms in α-lipoic acid supplemented group | | ALADI
N II | α-lipoic acid
(1200mg or 600 mg)
vs
placebo for 24
months | Neuropathic
symptoms | 65 diabetic patients | - | Statistically significant improvements in peripheral nerve function parameters | | ALADI
N III | α-lipoic acid (600
mg) vs placebo for 6
months | Neuropathy
impairment score | 509 Type II diabetic
patients aged 18-65
years | - | Improvements in neuropathy impairment score after 19 days of treatment, which was maintained for up to 7 months | | DEKAN | α-lipoic acid (800
mg) vs placebo for 4
months | Cardiac autonomic
neuropathy, as
indicated by heart
rate variability | 73 non-insulin-
dependent diabetes
mellitus patients | - | Improved cardiac autonomic neuropathy in α-lipoic acid treated group | | SYDNE
Y | α-lipoic acid (600
mg) vs placebo for 14
treatments | Neuropathic
sensory symptoms | 120 diabetic patients
with symptomatic
diabetic sensorimotor
polyneuropathy | - | Improvement in sensory
symptoms such as
pain, prickling and
numbness in α-lipoic acid
treated group | ### Table 5. Summary of selected clinical trials testing efficacy of antioxidants in COPD | Name/
author
of study | Trial | Primary
outcome | Study population | Hazard ratio
(Confidence Interval) | Interpretation of results | |-----------------------------|---|--|--|---|---| | WHS | Vitamin E (600 IU every
other day) and aspirin
(100 mg every other
day) vs placebo | Incidence of
chronic lung
disease | 38,597 women aged ≥ 45
without chronic lung disease
followed for 10 years | Chronic lung disease:
o.9o (o.81-o.99)
vitamin E vs placebo | Vitamin E
supplementation lead to
reduction in risk of
chronic lung disease | | Lykkesf
eldt et
al. | Vitamin cocktail containing vitamin C (272 mg), α-tocopherol acetate (31 mg), and folic acid (400 μg) vs placebo for 3 months | Plasma
antioxidant
status | 37 smokers and 38
nonsmokers with self-
reported low fruit and
vegetable intake | - | Ascorbic acid was depleted in smokers, and increased after supplementation. | | De
Benede
tto et al. | NAC (600 mg)vs
placebo for 2months | H ₂ O ₂ content in
the exhaled air
condensate
(EAC) | 55 males and females, aged,
41–75 years, non-smokers/
ex-smokers for at least 5
years, and affected by
moderate COPD | - | NAC decreased oxidant
stress in airways, as
indicated by H2O2
content in EAC | # References - 1) Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4:89-96. - 2) Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th. Oxford, UK: Clarendon Press; 2007. - 3) Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47-95. - 4) Willcox JK, Ash SL, Catignani GL. Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr. 2004;44:275-95. - Rice-Evans CA, Diplock AT. Current status of antioxidant therapy. Free Radic Biol Med. 1993;15:77-96. - 6) Sikora E, Cieslik E, Topolska K. The sources of natural antioxidants. Acta SciPolTechnol Aliment. 2008;7:5-17. - 7) Poljsak B, Šuput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev. 2013; 2013:956792. - Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69-90. - Rahman K. Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging. 2007;2:219-36. - 10) Donkena KV, Young CY, Tindall DJ. Oxidative stress and DNA methylation in prostate cancer. Obstet Gynecol Int. 2010;2010:302051. - 11) Stein CJ, Colditz GA. Modifiable risk factors for cancer. Br J Cancer. 2004;90:299-303. - 12) Manju V, Kalaivani Sailaja J, Nalini N. Circulating lipid peroxidation and antioxidant status in cervical cancer patients: a case-control study. Clin Biochem. 2002;35:621-5. - 13) World Cancer Research Fund. Food, nutrition and the prevention of cancer: a global perspective. Washington, DC: American Institute for Cancer Research, 1997. - 14) The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. N Engl J Med. 1994;330:1029-35. - 15) Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL, Valanis B, et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med. 1996;334:1150-5. - 16) Cheng SJ, Sala M, Li MH, Chouroulinkov I. Esophageal cancer in Linxian county, China: a possible etiology and mechanism (initiation and promotion). Carcinog Compr Surv. 1982;7:167-74. - 17) Qiao YL, Dawsey SM, Kamangar F, Fan JH, Abnet CC, Sun XD, Johnson LL, Gail MH, Dong ZW, et al. Total and cancer mortality after supplementation with vitamins and minerals: follow-up of the Linxian General Population Nutrition Intervention Trial. J Natl Cancer Inst. 2009;101:507-18. - 18) Cook NR, Albert CM, Gaziano JM, Zaharris E, MacFadyen J, Danielson E, Buring JE, Manson JE. A randomized factorial trial of vitamins C and E - and beta carotene in the secondary prevention of cardiovascular events in women: results from the Women's Antioxidant Cardiovascular Study. Arch Intern Med. 2007;167:1610-8. - 19) Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, Parnes HL, Minasian LM, Gaziano JM, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2009;301:39-51. - 20) Kelly BB, Narula J, Fuster V. Recognizing global burden of cardiovascular disease and related chronic diseases. Mt Sinai J Med. 2012;79:632-40. -
21) Buttar HS, Li T, Ravi N. Prevention of cardiovascular diseases: Role of exercise, dietary interventions, obesity and smoking cessation. Exp Clin Cardiol. 2005;10:229-49. - 22) Genkinger JM, Platz EA, Hoffman SC, Comstock GW, Helzlsouer KJ. Fruit, vegetable, and antioxidant intake and all-cause, cancer, and cardiovascular disease mortality in a community-dwelling population in Washington County, Maryland. Am J Epidemiol. 2004;160:1223-33. - 23) Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342:154-60. - 24) Boaz M, Smetana S, Weinstein T, Matas Z, Gafter U, Iaina A, Knecht A, Weissgarten Y, Brunner D, et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet. 2000;356:1213-8. - 25) Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet. 1996;347:781-6. - 26) Kushi LH, Folsom AR, Prineas RJ, Mink PJ, Wu Y, Bostick RM. Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. N Engl J Med. 1996;334:1156-62. - 27) Stampfer MJ, Hennekens CH, Manson JE, Colditz GA, Rosner B, Willett WC. Vitamin E consumption and the risk of coronary disease in women. N Engl J Med. 1993;328:1444-9. - 28) Hennekens CH, Buring JE, Manson JE, Stampfer M, Rosner B, Cook NR, Belanger C, LaMotte F, Gaziano JM, et al. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med. 1996;334:1145-9. - 29) Rapola JM, Virtamo J, Ripatti S, Huttunen JK, Albanes D, Taylor PR, Heinonen OP. Randomised trial of alpha-tocopherol and beta-carotene supplements on incidence of major coronary events in men with previous myocardial infarction. Lancet. 1997;349:1715-20. - 30) Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am J Obstet Gynecol. 2000;183:S1-S22. - 31) Backes CH, Markham K, Moorehead P, Cordero L, Nankervis CA, Giannone PJ. Maternal preeclampsia and neonatal outcomes. J Pregnancy. 2011;2011:214365. - 32) Anyaegbunam A, Edwards C. Hypertension in pregnancy. J Natl Med Assoc. 1994 Apr;86:289-93. - 33) Roberts JM, Cooper DW. Pathogenesis and genetics of pre-eclampsia. Lancet. 2001;357:53-6. - 34) Beazley D, Ahokas R, Livingston J, Griggs M, Sibai BM. Vitamin C and E supplementation in women at high risk for preeclampsia: a double-blind, placebo-controlled trial. Am J Obstet Gynecol. 2005;192:520-1. - 35) Rumbold AR, Crowther CA, Haslam RR, Dekker GA, Robinson JS, Group AS. Vitamins C and E and the risks of preeclampsia and perinatal complications. N Engl J Med. 2006;354:1796-806. - 36) Spinnato JA, Freire S, Pinto E Silva JL, Cunha Rudge MV, Martins-Costa S, Koch MA, Goco N, Santos CeB, Cecatti JG, et al. Antioxidant therapy to prevent preeclampsia: a randomized controlled trial. Obstet Gynecol. 2007;110:1311-8. - 37) Gülmezoğlu AM, Hofmeyr GJ, Oosthuisen MM. Antioxidants in the treatment of severe pre-eclampsia: an explanatory randomised controlled trial. Br J Obstet Gynaecol. 1997;104:689-96. - 38) Steyn PS, Odendaal HJ, Schoeman J, Stander C, Fanie N, Grové D. A randomised, double-blind placebo-controlled trial of ascorbic acid supplementation for the prevention of preterm labour. J Obstet Gynaecol. 2003;23:150-5. - 39) Mahdy ZA, Siraj HH, Azwar MH, Wahab MA, Khaza'ai H, Mutalib MSA, et al. Does palm oil vitamin E reduce the risk of pregnancy induced hypertension? Acta Medica. 2013;56:104-9. - 40) Sharma JB, Kumar A, Malhotra M, Arora R, Prasad S, Batra S. Effect of lycopene on pre-eclampsia and intra-uterine growth retardation in primigravidas. Int J Gynaecol Obstet. 2003;81:257-62. - 41) Han L, Zhou SM. Selenium supplement in the prevention of pregnancy induced hypertension. Chin Med J (Engl). 1994;107:870-1. - 42) Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17:24-38. - 43) Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87:4-14. - 44) Skyrme-Jones RA, O'Brien RC, Berry KL, Meredith IT. Vitamin E supplementation improves endothelial function in type I diabetes mellitus: a randomized, placebo-controlled study. J Am Coll Cardiol. 2000;36:94-102. - 45) Beckman JA, Goldfine AB, Gordon MB, Garrett LA, Keaney JF Jr, Creager MA. Oral antioxidant therapy improves endothelial function in Type 1 but not Type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol. 2003;285:H2392-8. - 46) Gaede P, Poulsen HE, Parving HH, Pedersen O. Double-blind, randomised study of the effect of combined treatment with vitamin C and E on albuminuria in Type 2 diabetic patients. Diabet Med. 2001;18:756-60. - 47) Sacco M, Pellegrini F, Roncaglioni MC, Avanzini F, Tognoni G, Nicolucci A, Group PC. Primary prevention of cardiovascular events with low-dose aspirin and vitamin E in type 2 diabetic patients: results of the Primary Prevention Project (PPP) trial. Diabetes Care. 2003;26:3264-72. - 48) Ziegler D, Hanefeld M, Ruhnau KJ, Meissner HP, Lobisch M, Schütte K, Gries FA. Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant alpha-lipoic acid. A 3-week multicentre randomized controlled trial (ALADIN Study). Diabetologia. 1995;38:1425-33. - 49) Reljanovic M, Reichel G, Rett K, Lobisch M, Schuette K, Möller W, Tritschler HJ, Mehnert H. Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (alpha-lipoic acid): a two year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Alpha Lipoic Acid in Diabetic Neuropathy. Free Radic Res. 1999;31:171-9. - 50) Ziegler D, Hanefeld M, Ruhnau KJ, Hasche H, Lobisch M, Schütte K, Kerum G, Malessa R. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy. Diabetes Care. 1999;22:1296-301. - 51) Ziegler D, Schatz H, Conrad F, Gries FA, Ulrich H, Reichel G. Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. A 4-month randomized controlled multicenter trial (DEKAN Study). Deutsche Kardiale Autonome Neuropathie. Diabetes Care. 1997;20:369-73. - 52) Ametov AS, Barinov A, Dyck PJ, Hermann R, - Kozlova N, Litchy WJ, Low PA, Nehrdich D, Novosadova M, et al. The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid: the SYDNEY trial. Diabetes Care. 2003;26:770-6. - 53) Barnes PJ. Chronic obstructive pulmonary disease. N Engl J Med. 2000;343:269-80. - 54) Bowler RP, Barnes PJ, Crapo JD. The role of oxidative stress in chronic obstructive pulmonary disease. COPD. 2004;1:255-77. - 55) Rahman I. Antioxidant therapies in COPD. Int J Chron Obstruct Pulmon Dis. 2006;1:15-29. - 56) Enescu O. Antioxidants rich foods may influence chronic obstructive pulmonary disease evolution. Maedica (Buchar). 2010;5:308. - 57) Agler AH, Kurth T, Gaziano JM, Buring JE, Cassano PA. Randomised vitamin E supplementation and risk of chronic lung disease in the Women's Health Study. Thorax. 2011;66:320-5. - 58) Lykkesfeldt J, Christen S, Wallock LM, Chang HH, Jacob RA, Ames BN. Ascorbate is depleted by smoking and repleted by moderate supplementation: a study in male smokers and nonsmokers with matched dietary antioxidant intakes. Am J Clin Nutr. 2000;71:530-6. - 59) De Benedetto F, Aceto A, Dragani B, Spacone A, Formisano S, Pela R, Donner CF, Sanguinetti CM. Long-term oral n-acetylcysteine reduces exhaled hydrogen peroxide in stable COPD. Pulm Pharmacol Ther. 2005;18:41-7. - 60) Aylward M, Maddock J, Dewland P. Clinical evaluation of acetylcysteine in the treatment of patients with chronic obstructive bronchitis: a balanced double-blind trial with placebo control. Eur J Respir Dis Suppl. 1980;111:81-9. - 61) Anlasik T, Sies H, Griffiths HR, Mecocci P, Stahl W, Polidori MC. Dietary habits are major determinants of the plasma antioxidant status in healthy elderly subjects. Br J Nutr. 2005;94:639-42. - 62) Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, Mathers C, Rivera J, Group MaCUS. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet. 2008;371:243-60. - 63) Bhutta ZA, Black RE, Brown KH, Gardner JM, Gore S, Hidayat A, Khatun F, Martorell R, Ninh NX, et al. Prevention of diarrhea and pneumonia by zinc supplementation in children in developing countries: pooled analysis of randomized controlled trials. Zinc Investigators' Collaborative Group. J Pediatr. 1999;135:689-97. - 64) Fawzi WW, Chalmers TC, Herrera MG, Mosteller F. Vitamin A supplementation and child mortality. A meta-analysis. JAMA. 1993;269:898-903. - 65) Poljsak B, Milisav I. The neglected significance of "antioxidative stress". Oxid Med Cell Longev. 2012;2012:480895. - 66) Goodman M, Bostick RM, Kucuk O, Jones DP. Clinical trials of antioxidants as cancer prevention agents: past, present, and future. Free Radic Biol Med. 2011;51:1068-84. #### Sexual Selection is Safe Selection Why are the women more attracted to slimmer and fitter men? If you accept Darwin's ideas, it is due to sexual selection: certain bodily or facial features are indicators of better health and better genes. The findings of a new study published in American Journal of Human Biology (news release, Feb. 18, 2014), apparently supports this. The study, which the authors claim to be the first of its kind, was carried out in University of Wroclaw in Poland, on 90 healthy men and 103 healthy women. Nose and throat swabs were collected from them to find
out who among them were colonised by six potentially harmful bacterial species including staphylococci and streptococci. It was found that men with lean body mass and low fat content were less likely to be colonised by bacteria than their fatty cohorts. They were not only carrying less fat but also less germs. The authors feel that the lean, fit men are likely to be more immunocompetent. However, similar association was not observed in women. (http://as.wiley.com/WileyCDA/PressRelease/pressReleaseld-110307.html) - Dr. K. Ramesh Rao